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Displaced vortices on lattices 

L J Campbell 
Theoretical Division, MS-B262, Los Alamos National Laboratory.  Los Alamos, N M  87545, 
USA 

ReceiLed 30 June 1989. in final form 6 March 1990 

Abstract. The energ! associated \ \ i th a general displacement of either a single Lortex, a 
cluster, o r  a superlattice of Lortices on  an  arbitrary lattice is der i ted in terms of rapidlq 
conLergent sums of simple functions.  Expansions to second order  in the displacement,  
equi\alent to the vibrational modes,  are  also der i \ed for the single vortex. the superlattice, 
and  an  infinite row of Lortices 

1. Introduction 

Certain physical models, such as for Josephson-junction arrays, dense flux lines in 
high-K type-I1 superconductors, superfluids, the ZD Coulomb system, and  screw disloca- 
tions in crystals under torsional stress are equivalent to a two-dimensional lattice of 
vortices characterised by a pairwise interaction energy proportional to log( r ) .  For 
example, two-dimensional vortices in Eulerian fluid dynamics have a mutual interaction 
energy, E(r,,) = -(I',rld/47r) log(/r ,  - rli2), where I' is the circulation and d is the fluid 
density. Other systems have different constants, so the prototypical interaction energy 
is taken to be -log(lr, -',I?). Aside from these models, the vortex lattice is a non-trivial 
example of an  infinite system whose constituents have long-ranged interactions. The 
emphasis here is on the change of energy associated with moving selected vortices 
from their lattice sites, with all other vortices remaining fixed or 'pinned'. 

Even the simplest cases of triangular or square lattices of identical vortices produce 
a puzzle, at least superficially, in that their first-order stability with respect to single 
vortex displacements cannot be inferred from either of the two components of the 
system: the vortices and the uniform, static, neutralising background. Figure 1 shows 
the energy of a vortex interacting with six others located at the points of a regular 
hexagon. At the centre q, of the hexagon the seventh vortex not only lacks first-order 
stability but has no energy variation of order Ir - -r( , l ' .  (Of course, no collection of 
vortices can give an maximum or minimum in the energy, except at a vortex, because 
the resulting field is a solution of Poisson's equation.) Explicitly, the interaction energy 
in this case is 

Because the entire infinite triangular lattice of vortices can be built by adding more 
hexagons with larger radii and appropriate orientation around the same origin it follows 
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Figure 1. Energy E ( r )  of a vortex interacting with six vortices on  a regular hexagon. At 
the  centre r ,  of the hexagon the surface is flat through the fifth power of displacement 
lr - r,l. (The energy range is bounded for clarity.) 

that the infinite triangular lattice confers no first-order stability on single-vortex dis- 
placement in any direction. By symmetry, the infinite uniform background also would 
seem incapable of giving stability. The same result holds for the square lattice (displace- 
ment energy a6r4). A closer look is required to derive the stability. 

2. Notation 

The energy density of an  infinite lattice of vortices with strengths r, has the structure 

~ ( r  , , . . . , r  ~ ; L , , L ~ ) = r ’ ~ ( d , p ) + ~ l o g ( N ) + -  C C ~ J J ( ~ ~ - ~ , ; L ~ , J J  (1) 

where r = x i  + y$ and N is the number of vortices per unit cell defined by the generators 
L ,  and L2 with the ratio p = L , / L 2  and relative angle 4 :  L ,  - L 2  = L I L z  cos 4. (Unit 
cells are those whose translations reproduce the lattice.) Explicit expressions are given 
in the appendix. Of the smallest unit cells the one having the largest d o s  .n/2 will be 
called elementary; it has generators e , ,  ez with the ratio po = e l / e 2  and relative angle 
do: e,  ez = e l e z  cos 4”. The set of lattice sites in a general o r  ‘super lattice’ unit cell 
will be denoted by L =  { r , :  j = 1,. . . , N } .  This notation is illustrated in figure 2 for one 
vortex per elementary unit cell, the case that will be considered initially. For brevity, 
f ( r i  - 5 ;  L,  , L,)  will be denoted f L ( r ,  - r , )  or  fL when there is no ambiguity. 

- 
- r’ 1 4 1  4 

N ! = I  , = , + I  

3. Structure of the displacement energy 

A simple, but useful, relation follows from the indifference of the energy density to 
the choice of superlattice unit cell. In  particular, 

E ( r , ,  . . . , rh, ; L l ,  L 2 )  = E(rl  ; e , ,  4 ( 2 )  
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o o p o o o o o  

Figure 2. A simple vortex lattice, showing the elementary unit cell generators e , ,  e2 and  
tNo examples of superlattice unit cells having generators L , ,  L 2 .  The  superlattice unit cell 
at the top  has  generators colinear with e , ,  e:. The shaded vortices belong to the respective 
unit cells. 

for the case of one vortex (with F,  = 1)  per unit cell. This immediately gives 

* -  
where Eo= E ( & ,  po).  

Now, consider the vortex-hole energy. Displacing a vortex from the lattice site r l  
to r results in a superlattice of displacements corresponding to the generators L 1 ,  L z .  
The energy of a vortex-hole pair per unit cell (containing N sites of the elementary 
lattice) is the energy difference 

E k h ( r ,  r , ;  L l , L 2 ) =  N E ( r ,  r z , .  . . , r , ;  L , ,  L 2 ) - N E ( r , , .  . . , y V ;  L , ,  L , )  

E,( r )  + Eh-fL( r -  r l )  (4) 

where the terms E , ( r )  (single-vortex energy) and E h  (hole or vacancy energy) in the 
last line are defined by the corresponding terms in the previous line. The number of 
points that are summed is denoted above the summation signs and  the set to which 
they belong is specified under the summation sign. The procedure in (4) is to cancel 
all terms except those involving r and r l  . In general, the energy of M c N vortex-hole 
pairs can be reduced to that of single vortex-hole pairs plus their mutual interactions 

Evh(W1,...,wM,rl,...,rM) 

where w, are the positions of the displaced vortices and r, the lattice sites of the holes. 
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To evaluate (4) consider first E , .  The equivalence of all hole sites rl in L allows 
E h  to be expressed as 1/N times the sum over all possible holes 

where (3) was used to obtain the last equality. 
Next, E,(r )  is periodic on the vortex lattice with positive singularities at r =  

m l e l  + m2e2 and is equal to fe( r )  = f (  r ;  e , ,  e?). To see this, consider a particular lattice 
containing 2 N  vortices in the unit cell L ,  , L 2 .  Of these, let N be at the lattice sites 
L ( r )  of the simple lattice and  denoted by r, .  Let the remaining N, denoted by w, ,  be 
displaced from the simple lattice sites by a constant r :  w, = rl + r ;  J = 1, . . . , N. The 
energy per vortex of this lattice is, according to ( l ) ,  

1 [71\.1 

2 N  L i r ) t L ( w 1  
~ ( w ,  , . . . ,  w W ,  r ,  , . . . ,  r , ;  L , ,  ~ ~ ) = Z + t l o g ( 2 ~ ) + -  CC f L .  ( 7 )  

The double sum above can be decomposed into sums over each lattice L(r )  and L(w)  
separately, plus their cross term 

where (3) and  the definition (and periodicity) of E ,  were used. However, the same 
energy per vortex given by ( 7 )  can equivalently be evaluated from ( 1 )  for the elementary 
unit cell e , ,  e7 

Substituting (8) into ( 7 )  and equating with (9) gives the desired result: 

The last term on the right-hand side of (4), f L ( r  - r , ) ,  is periodic on the unit cell 
L , ,  L2 with positive singularities at r = r ,  + m , L ,  + m,L2.  Moreover, it depends only 
on its argument normalised to the generators. In particular, for the case of super lattice 
unit cell generators collinear with the elementary unit cell generators, i.e. L ,  = n l e l ,  
L 2 =  n,e,, n = 1 , 2 , 3 , .  . . , it follows that 

(11) 

This collinearity is assumed hereafter, so it is sufficient to considerf,( r ) ,  which happens 
also io be E J r ) .  The existence of only positive singularities for fe ( r )  raises the question 
of where the minima are found. For the triangular lattice ( 4  = 60°, p = 1) the minima 
occur on the long diagonal of the elementary unit cell at rI l3  = c ( e ,  + e z ) ,  c = i ,  f . These 
locations are the centres of the elementary triangles of the triangular lattice. For the 
square lattice (4  = 90", p = 1)  the minimum is at the centre of the elementary unit cell, 
r I l 2 = f ( e ,  + e , ) .  A contour plot is shown in figure 3 off,(r)  along the diagonal of an  
elementary unit cell as a function of 4 for p = 1 .  

f (q1n ,e ,+q2n2e , ;  n le l ,  n 2 4 = f ( q l e I + q , e , ;  e , ,  4. 

Using the above expressions for E, ( r )  and E h ,  the function Evh(r) becomes 

Evh(r, 0; L , ,  ~ 2 )  = l o g ( ~ ) + 2 ( E - - ~ ) + f ( r ) - f , ( r )  (12) 
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0.1 0.3 0.5 0.7 0.9 
C 

Figure 3. E , ( t ;  e , ,  e2i evaluated on the diagonal t =  c ( e , + e , i  of unit cells with ~ e l ~ / ~ e l ~  = 1 
and  3 0 " s  d 5 90". The a r robs  point in the direction of decreasing energy. Two minima 
appear  on  the diagonal of the unit cell for all d less than about  70". 

-. ............... 
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where r, has been chosen as the origin, without loss of generality. E,h is shown in 
figure 4 for variously sized unit cells with n ,  = n2 on the triangular lattice. The values 
of r are confined to the discrete values r, on the diagonals of the unit cells. 

4. Applications 

4.1. An isolated, displaced vortex and its normal modes 

Thus far, the displaced vortices have themselves been superlattices with generators L , ,  
L 2 .  Consider now the case of an isolated displaced vortex when L , ,  L2 -+ X, 

E:h(r; e , ,  e Z ) =  lim Ehh(r;  L , ,  L 2 ) =  lim E,h(r; n , e , ,  n 2 e 1 ) .  (13) 
L ,  L 2 - x  ,,, , "2 - J: 

This limit, which only affects log( N )  - f L (  r )  in (12), is the same for any n , / n Z :  

E~xh(r)=fe(r)+log[4?T2(x2+y2)/ef]-a,+210g 6 A fi - 1  [1-2cos(kx,,)  e-Af'ii+e-'Amil 1 

= fe ( r )  + log[ (x' + y')/ e ,  e ,  sin 4 1 - 2 Eo (14) 

where it was convenient to define 

U = 277 sin d / p  x = 2?r cos 4 / p .  (15) 

E;,(r) is easy to interpret as the energy of the displaced vortex with the lattice, plus 
its interaction with a vortex of opposite strength at the vacancy, plus a constant that 
ensures lim,,o E:,(r) = 0. The envelop function in figure 4 is E:h(r) evaluated at the 
same points as Eth(r) .  A similar expression for E?h(r) was obtained by O'Neil [ l ] .  

At large vortex-hole separations the overall energy increases as log( r ) ,  with singular 
maxima and  local minima arising from the vortex-lattice interaction f e (  r ) .  However, 
in the vicinity of the vacancy many local minima have been lost, as shown in figure 5 
for square and  triangular lattices. The minima were found numerically using the 
conjugate gradient method. In figure 6 the constant energy contours are also shown, 
which represent dynamical trajectories of the displaced vortex. 

It is possible now to examine E?h(r) for small displacements by expanding (14) at 
r = 0 to order r2:  

where S,,? are rapidly converging sums 

Unless the lattice is very distorted, the point r = 0 is a minimum of the energy and the 
equipotential surfaces are ellipses. For both the cases of the triangular and  the square 
lattice ( 4  = ?r/3 and n / 2 ,  and ,yo= ?T and 0, respectively) the term sin(kX,) and, 
consequently, the sum SI in (16) vanish, which, in turn, imply that the principal axes 
of both ellipses coincide with the xy axes. Because the respective six- and four-fold 
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square lattice 

triangular lattice 
Figure 5. Local minima ( f u l l  circles) of the bortex-hole energy i n  the vicinity of an  isolated 
vacancy ( lower left corner)  in a square ( t o p )  and  triangular (bo t tom)  lattice. Note the 
absence of minima near the vacancy. 

symmetries of these lattices are higher than the symmetry of an ellipse, the ellipses 
must be circles. Therefore, the R H S  of (16) has the form c ( x ' + y ' ) ,  which implies 
S2 = i(d - l /uJ  for triangular and  square lattices, giving 

(18) 
7~ { ( 2 / 4 3 ) ( x ' + - p ' ) + 0 ( r 3 )  triangular lattice 
ei ( x ' + y ' ) + O ( r ' )  square lattice. 

E:h( r )  = 7 x 

More generally, in figure 7 the small displacement eigenvalues from the numerical 
solution of (16) are shown as a function of # for p = 1. The values are divided by the 
eigenvalues of the triangular lattice. One of the eigenvalues becomes negative for 
4 = 29-34". One may conclude that the single-vortex displacement enjoys first-order 
stability in most simple lattices. 

A heuristic interpretation can be given to the normal modes in (18) by supposing 
that the displaced vortex interacts with the background in a particular way. Namely, 
the background is taken to be a disk (of arbitrarily large radius) centred at the displaced 
vortex's equilibrium position. When the vortex is displaced by 6r the only restoring 
force of order 6r  comes from interaction with the portion of the background within a 
disk of radius 6r.  (As seen in section 1, the other vortices only contribute at higher 



3324 L J Campbell 

Figure 6 .  Equal-energ) contours of the vortex-hole energy near an  isolated vacancy in the 
triangular lattice. 

1.6 - 

triangular lattice 

4 

Figure 7. Eigenkalues of a single Lortex for small displacements from its lattice site as  a 
function of & for le , ' /  e 2 ~  = 1 .  The values are  normalised to those of the tr iangular lattice 
in 118) .  

order.) By symmetry, the interaction with the background outside the disk of radius 
S r  vanishes. Explicitly, the restoring force F is the integral over the background 
area An 

where p is the density of the background vorticity and  TB = r = -1. This gives F = 
- 2 p m / r 2  and a displacement energy E = p d .  The results of (18) are thereby 
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reproduced, because p = 2 / &  (respectively, 1 )  for a triangular (respectively, square) 
lattice. 

To answer the 'puzzle' posed in section 1, it is indeed the background that gives 
stability. The lattice energy equation is derived as the joint limit of finite vortex systems 
plus the background. For the finite systems stability is manifest, although for no  finite 
system is the triangular lattice the arrangement of lowest energy. If the lattice were 
neutral the background would not be present, but systems of mixed F (i.e. both + and 
- )  are never stable, whether or not they are neutral. 

4.2. A n  isolated, displaced cortex row and its normal modes 

A more general expression for small displacements is obtained by expanding prior to 
the N -+ x limit, i.e. by expanding ( 1 2 ) :  

E,, , ( r )  = (')'(c ( 1  - l / n , n , ) + ( x ' - y 2 ) [ & ( 1  - 1 / n i ) - 2 ( S z ( a o ,  xo)-s2(u,  x ) / n i ) ~  
ffn 

+ X ~ ~ ( S , ( ~ , , X , , ) - S , ( ( T , X ) / ~ ~ )  + O ( r 7 ) .  ( 1 9 )  ) 
If n ,  = n2 then the above can be written as E,h(r )  = (1 - l / N ) E : h ( r ) + O ( r ' ) .  The 
vortex-hole 'binding energy' decreases as the unit cell decreases until it identically 
vanishes at N = 1 ,  which corresponds to uniform displacement of the lattice. 

The energy required to displace every n,th vortex on a single row parallel to the 
x axis corresponds to the limit n z  -$ x in ( 1 9 ) .  In particular, the energy for the solid 
row, n, = 1 ,  is 

For the triangular and square lattices this infinite row displacement energy becomes 

Note that for the square lattice the row is unstable to displacement in the .Y direction, 
but for either lattice the row is more stable to displacements in the y direction than 
is a single vortex, as given by (18).  

4.3. A n  isolated, displaced vortex cluster 

Consider now a cluster of M vortex-hole pairs. From the same expansion used in 
(14) it is seen that in the limit n , ,  n 2 + x  the energy given in ( 5 )  for several displaced 
vortices becomes 

E:h(H', , . . . , W \ + ,  r i , .  . . , J'\f 

= lim € , , , ( w , ,  . . . , w ~ , ,  r , ,  . . . , r z ,  1 

= - ~ [ 2 E , , + l o g ( e , e ,  sin 4 ) ] +  1 f e ( w l )  

nl n - x  

L I  

I - ,  
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where the periodicity of f e (  w, - r J )  was used and the origin was assumed to be a lattice 
point. Therefore, M displaced vortices in an isolated cluster interact with the lattice 
according to E , (  w , )  and among themselves as M free vortices (with the same circulation) 
in the presence of the same number of vortices at fixed lattices sites rJ (with opposite 
circulation). The dynamics of these displaced vortices, which is largely to be explored, 
is given by the usual formulae 

4.4. Superlattice and isolated vortex clusters displaced on a general lattice 

Finally, consider the unrestricted case of J vortices per elementary unit cell with 
arbitrary strengths rJ.  Denote the vortex positions in a general superlattice unit cell 
having generators L ,  = n , e ,  , L2 = n2ez by rh,, where k denotes the elementary cell and  
j denotes the species: 1 S k s n ,  n ,  = K and 1 S j s J. The energy of a superlattice of 
displacements r ,  , + r is 

where N = KJ and the prime on the second summation omits the term rh, = r ,  , . The 
two summations overfL can be transformed to expressions infe by the identity in (10) 
and 
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Appendix 

Here we give the explicit expression for the energy per vortex of an infinite vortex 
lattice having unit cell generators L,  and L, .  The interaction energy between two 
vortices is taken to be -rir,, loglr, - rjl . (No intrinsic or ‘core’ energy per vortex is 
included because it is both non-generic and trivial to add (so long as the cores do not 
overlap). As a result, the energy is defined only to an additive constant.) 

A unit cell contains N vortices of arbitrary strength T i  at arbitrary positions r,. 
The generator L, is at an angle 4 with respect to L , ,  which is parallel to the x axis. 

2 

As stated earlier, it is convenient to define 

where 
a 2~ sin ( b / p  x = 2T cos ( b / p  

P = L,/L2 

r=x;+.Yy*= 91L1+92L2= ( X - Y X / ~ ) L I / I L 1 I + ( 2 . r r y / ~ ) ~ 2 / l ~ , I .  

LI * L, = L, L2 cos 4. 
The useful relation between x, y and unit cell coordinates q l ,  q2 is 

The energy per vortex is [2-41 

9 . .  . 9 r N ;  L l  , L 2 )  

where 

oc 

g p ( r ;  a ,x)=  1 - 2 c o s ( 2 ~ x / ~ ~ + p x )  e x p ( - l a p + 2 ~ y / ~ , I ) + e x p ( - 2 l a p + 2 ~ y / ~ , I )  

= 1-2 cos[2.rrql+(p+q2)xI exp(-alp+q21)+exp(-2alp+q21). (A61 
In practice, only three to five terms of the infinite products are needed for high 

accuracy. The expression for f ( r ;  L,  , L2)  in (A5) is not explicitly periodic in the L, 
direction because a relation, exact only for 0 G y < lL21 sin 4, was used to simplify the 
fully periodic expression [4]. Therefore, r should be taken modulo L2 when using (A5). 
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